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1 Introduction

Since the realization that string theory could give rise to anomaly-free chiral theories,

compactifications have been studied in many different contexts in attempts to make contact

with the observed four-dimensional world. The process of compactification usually involves

breaking of the extended supersymmetry present in higher dimensional supersymmetric

theories.

The compactification procedure for the RNS superstring is well-known for backgrounds

with pure NS fields. If one wants to include RR fields in the case of Type II string

theories, then worldsheet methods are not available and one is forced to study it using only

supergravity.

In the case of the RNS superstring, compactifications to Calabi-Yau manifolds and

their orbifold limits are standard knowledge in the field and many interesting physical

properties are derived using worldsheet methods. Alternative descriptions of the RNS

superstring in compactified backgrounds, known as hybrid formalisms, were developed for

two [1], four [2], and six [3] dimensions by Berkovits and collaborators. Since the roots

of the hybrid formalism are in the RNS superstring, it was not known until recently [4]

how to study compatifications with RR fields. One of the interesting aspects of the hybrid

formalism approach to RR flux compactifications is that the N = (2, 2) superconformal

algebra, an essential ingredient in standard CY compactifications, is still preserved. On the

other hand, a drawback of it is that it is not known how the procedure works if the starting

point of the compactification is not a CY manifold. Furthermore, computations involving
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compactification-dependent states are subtle, and appropriate care should be taken in this

case.1

For these reasons we would like to have another formalism in which it is possible to

study more general flux compactifications. The pure spinor formalism [5] is the appropriate

one. However, the pure spinor formalism has superspace coordinates corresponding to all

supersymmetries and curved superspaces are not known explicitly except for maximally

symmetric cases and the recent construction of the full Type IIA superspace for AdS4 ×

CP 3 [6]. For the eleven-dimensional case a systematic procedure was developed in [7].

Although one could use this procedure, four-dimensional supersymmetry arguments are

more effective to attack the present problem.

Compactifications of the pure spinor formalism is the theme of this paper. As a

first step toward more general backgrounds in heterotic and type II theories, we will study

compactifications of the heterotic string on a Calabi-Yau 3-fold. The pure spinor formalism

was studied in cases with reduced supersymmetry previously in [8–12]. What is missed by

some of these previous works is the input from the geometry of the Calabi-Yau and the

full pure spinor constraint from ten dimensions. These two ingredients give extra terms

to the BRST charge and these extra terms allow us to derive on-shell equations for the

four-dimensional multiplets.

Chiral superspace and chiral coordinates. As an example of the construction in the

next sections let us consider first the simple case of N = 1 four-dimensional supersymmetry.

In this case the superspace coordinates are given by (xαα̇, θα, θ
α̇
). The supersymmetric

derivatives are given by

Dα = ∂α + iθ
α̇
∂αα̇, Dα̇ = −∂α̇ − iθα∂αα̇. (1.1)

It is well-known that a consistent non-trivial constraint on superfields is Dα̇Φ = 0. The

easiest way to solve this constraint is to realize that the chiral variable yαα̇ = xαα̇ + iθαθ
α̇

is annihilated by Dα̇, i.e. Dα̇yββ̇ = 0. We then construct superfields depending only on

(yαα̇, θα). Furthermore, the supersymmetric derivatives and supercharges in these variables

are given by

Dα = ∂α + 2iθ
α̇
∂αα̇, Dα̇ = ∂α̇,

Qα = ∂α, Qα̇ = −∂α̇ + 2iθα∂αα̇, (1.2)

and we have that Qαyββ̇ = 0. This means that any background field Φ(yαα̇) is invariant

under chiral supersymmetries.2 Of course, in Minkowski signature, it is not possible to

consider theories invariant only under the anti-chiral supersymmetry. (In a Euclidean

signature the chiral and anti-chiral supersymmetries are not related by complex conjugation

and such a symmetry is consistent.) The fact that the yαα̇ is not real forces us to include

1 One of the authors (BCV) would like to thank Massimo Bianchi and Pierre Vanhove for pointing out

these problems and for discussions on these issues.
2Note that we could also consider dependence on θ but that is not a physical superfield, that is, not a

representation of the supersymmetry algebra.
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its complex conjugate and one should also consider functions which are not holomorphic in

yαα̇. This means that chiral coordinates are not useful for reducing supersymmetry since

we cannot have theories constructed only on subspace parameterized by yαα̇. (Of course

the superpotential is a function on this subspace and one can use holomorphicity to prove

non-renormalization theorems but there is also the D-term.)

It turns out that higher dimensional superspaces also have chiral-like variables.

We will see that after we break ten-dimensional Lorentz invariance, type I supersym-

metry in ten dimensions will have “chiral” variables invariant under four-dimensional

N = 1 supersymmetry.

Organization. In the next section we introduce the pure spinor formalism and discuss

general concepts that are useful in later sections. In section 3 we construct curved-space

d-operators and the BRST charge for a complex six-dimensional internal manifold and

show that nilpotence and four-dimensional supersymmetry require that the internal space

is a Calabi-Yau manifold. Section 4 contains a discussion of the spectrum obtained from

the cohomology of the BRST operator constructed in section 3. The final section contains

future directions and open problems.

2 Preliminary concepts

In this section we discuss preliminary material needed for later sections. We begin with

a short review of the pure spinor formalism. After that we discuss type I supersymmetry

preserving only four dimensional Lorentz symmetry. We close this section with a review of

complex geometry using frames.

2.1 Review of the pure spinor formalism

The action of the heterotic string in a flat background is given by

S =

∫
d2z

[
1

2
∂X bm∂Xbm + pbα∂θbα + ωbα∂λbα

]
+ Sλ + SR, (2.1)

where (X bm, θα) parameterize the D = 10, N = 1 superspace and pbα is the fermionic

conjugate momentum. Sλ is the action for the pure spinor λbα which is defined to satisfy

the constraint

λγ bmλ = 0 for m̂ = 0 to 9. (2.2)

Although an explicit form of Sλ in terms of λ and its conjugate momentum ω requires

breaking SO(9, 1) (or its Euclidean version SO(10)) to a subgroup, the OPE of λbα with

its Lorentz current N bmbn = 1

2
ωγ bmbnλ is manifestly SO(9, 1) covariant. The condition (2.2)

implies that ω is defined only up the gauge invariance

δωbα = Λ bm(γ bmλ)bα, (2.3)

for any Λ bm. Finally, SR is the action for the right-moving degrees of freedom which describe

the reparametrization ghosts and the heterotic fermions.
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It is useful to define the supersymmetric operators in terms of the free worldsheet fields

dbα = pbα −

(
Π bm −

1

2
θγ bm∂θ

)
(γ bmθ)bα, Π bm = ∂X bm + θγ bm∂θ, (2.4)

which satisfy the OPE’s

dbα(y)dbβ
(z) → −2γ bm

bαbβ
Π bm(y − z)−1, dbα(y)Π bm(z) → (γ bm∂θ)bα(y − z)−1. (2.5)

The BRST operator and left moving stress energy tensor are given by

Q =

∮
λbαdbα, T = −

1

2
∂X bm∂Xbm − pbα∂θbα + Tλ (2.6)

where λbα carries ghost-number 1. Nilpotency is easily checked using the OPE’s (2.5) and

the pure spinor condition (2.2). It can be shown that the cohomological conditions give

the equations of motion and gauge invariances of linearized N = 1,D = 10 supergravity.

In the right moving sector we have the heterotic fermions, ΨA, and the reparametriza-

tion ghosts, (b, c). The action for them is given by

SR =

∫
d2z

[
ΨA∂ΨA + b∂c

]
. (2.7)

The right moving energy momentum tensor is

T = −
1

2
∂X bm∂Xbm − b∂c − ∂(bc) + TA, (2.8)

where TA is the c = 16 stress energy tensor coming from the heterotic fermions. Finally,

the right moving BRST charge is given by

Q =

∮ (
cT + c∂cb

)
. (2.9)

Physical vertex operator should be in the cohomology of both Q and Q.

The action in a general curved background can be constructed by adding the integrated

vertex operator to the flat action of (2.1) and then covariantizing with respect to the

background super-reparametrization invariance. The result of doing this is [13]

S =

∫
d2z

1

2
ΠbaΠ

bb
η

babb
+

1

2
Π

bAΠ
bB
B bB bA

+ dbαΠ
bα

+ ωbα∇λbα + ΨA∇ΨA

+dbαJ
I
W bα

I + λbαωbβ
J

I
UI bα

bβ + SFT + Sbc, (2.10)

where Π
bA = ∂Z

cMEcM

bA and J
I

= 1

2
KI

AB
ΨAΨB with the Ks denoting the generators of the

gauge group. The covariant derivatives are defined as

∇λbα = ∂λbα + λ
bβΩbβ

bα, ∇ΨA = ∂ΨA + AIK
I
AB

ΨB,

where Ωbβ
bα = Π

bA
Ω bAbβ

bα, AI = Π
bAA

I bA
with Ω bAbβ

bα being the background connection for

Lorentz and scaling transformations, and A
I bA

the connection for background gauge trans-

formations. The Fradkin-Tseytlin term SFT is given by

SFT =
1

2π

∫
d2zrΦ, (2.11)
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where r is the world-sheet curvature and Φ is the dilaton superfield. Although this term is

not necessary for having a covariant action, it is required to have a quantum conformally

invariant sigma-model action [14, 15].

2.2 N = 1 ten dimensional supersymmetry

We are interested in a background preserving N = 1 supersymmetry in four dimensions.

The corresponding supersymmetric derivative algebra is a sub-algebra of the ten dimen-

sional supersymmetric derivative algebra. A 16-component, 10-dimensional spinor decom-

poses into

16 → (2,4) + (2,4) (2.12)

representations of SL(2, C) and SU(4). We will denote the four-dimensional coordinates

as xa or xαα̇ and the six dimensional coordinates by yi where the index i goes from 1 to

6. To relate vector and spinor representations of the Lorentz group we use standard sigma

matrices. The six dimensional sigma matrices are σIJ
i where I, J = 1, . . . , 4 are SU(4)

spinor indices and sigma is antisymmetric in I and J . These sigma matrices are related to

the ones with indices down by

σi
IJ =

1

2
ǫIJKLσi KL. (2.13)

Other useful identities that the six dimensional sigma matrices satisfy are

σIJ
i σi

KL = δI
KδJ

L − δI
LδJ

K , σIJ
i σi KL = ǫIJKL. (2.14)

The 16 supersymmetries are now parameterized by complex spinors (ηI
α, ηα̇

I ) and the

worldsheet spinor variables are now (θI
α, θ

α̇
I ). The supersymmetry transformations of the

bosonic variables are

δxm = iθIσmηI − iηIσmθI (2.15)

δyi = iθασiηα − iηα̇σiθ
α̇
, (2.16)

where we suppressed the index contractions with the sigma matrices. As in four dimensions

it is useful to consider

yIJ = yiσIJ
i , yIJ = yiσ

i
IJ , (2.17)

subject to the reality condition

(yIJ)† =
1

2
ǫIJKLyKL, (2.18)

inherited from (2.13).

Since we are interested in preserving only N = 1 supersymmetry in four dimensions,

we split the SU(4) index to ( i, ·) where i = 1 to 3 and the · denotes a singlet under the

SU(3) subgroup of SU(4). Now the odd superspace variables are (θα, θ
α̇
, θ i

α, θ
α̇
i ) and the

supersymmetry transformations are given by

δxm = iθσmη − iησmθ + iθ iσmη i − iη iσmθ i, (2.19)

δy i = iθα iηα − iθαη i
α − iǫ i j kηα̇ jθ

α̇

k, (2.20)

δy i j = iθα iη j
α − iθα jη i

α − iǫ i j kηα̇
kθα̇ + iǫ i j kηα̇θα̇ k. (2.21)
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Note that if we write y i j as y i = 1

2
ǫ i j ky j k the reality condition is just (y i)† = y i which

means that (y i, y i) are usual complex coordinates. In the standard SU(4) → SU(3)×U(1)

decomposition, the spinors θ i have U(1) charge −1

2
and the singlets θ have charge 3

2
(and

the opposite charges for the conjugate spinors). This is reflected in the supersymmetry

transformations above since y i has +1 charge.3

In this notation, the algebra of supersymmetric derivatives in flat space is given by

{dα, dβ} = 0 {dα, dα̇} = −2i∂αα̇ {dα̇, dβ̇} = 0

{dα, dβ i} = −2iεαβ∂ i {dα, dα̇ i} = 0 {dα̇, d
β̇ i
} = −2iε

α̇β̇
∂ i (2.22)

{dα i, dβ j} = −4iεαβǫ i j k∂ k {dα i, dα̇ j} = −2iδ i j∂αα̇ {dα̇ i, dβ̇ j
} = −4iε

α̇β̇
ǫ i j k∂ k.

A realization of this algebra in terms of the superspace coordinates is given by

dα = ∂α + iθ
α̇
∂αα̇ + iθ i

α∂ i,

dα̇ = −∂α̇ − iθα∂αα̇ − iθ
i

α̇∂ i,

dα i = ∂α i + iθ
α̇

i ∂αα̇ − iθα∂ i − 2iǫ i j kθ
j
α∂ k (2.23)

dα̇ i = −∂α̇ i − iθα
i ∂αα̇ + iθα̇∂ i + 2iǫ i j kθ

j

α̇∂ k

Since we are in flat space, there exist corresponding supercharges which commute with

all these supersymmetric derivatives. However, as we will not need their full expression

here, we will not write them.

The interesting property of the realization (2.23) using the notation described earlier

is that there exist chiral-like coordinates analogous to the four-dimensional case described

in the introduction:

z i = y i − iθα iθα, z i = y i − iθ
i

α̇θ
α̇
. (2.24)

These are invariant under the SU(3) singlet supersymmetries generated by (ηα, ηα̇) but

unlike the four-dimensional case, we can consistently consider functions of (z i, z i) and still

have Minkowski signature in spacetime. Furthermore, when written in these variables the

realization (2.23) simplifies to

dα = ∂α + iθ
α̇
∂αα̇ + 2iθ i

α∂ i,

dα̇ = −∂α̇ − iθα∂αα̇ − 2iθ
i

α̇∂ i, (2.25)

dα i = ∂α i + iθ
α̇
i ∂αα̇ − 2iǫ i j kθ

j
α∂ k

dα̇ i = −∂α̇ i − iθα
i ∂αα̇ + 2iǫ i j kθ

j

α̇∂ k,

where now the derivatives (∂ i, ∂ i) are taken with respect to (z i, z i). Note that the al-

gebra (2.22) is preserved. Furthermore, in these new variables, the corresponding super-

charges for the supersymmetries generated by (ηα, ηα̇) are given by

qα = ∂α − θ
α̇
∂αα̇, qα̇ = −∂α̇ + iθα∂αα̇, (2.26)

3Taking care to keep track of the U(1) charges, we can raise and lower all SU(3) indices at will with the

understanding that we only apply Einstein summation convention when the index carriers have opposite

U(1) charges.
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which means that the variables (z i, z i) are invariant under the SU(3) singlet supersymme-

tries. Note also that the new “chiral” variables (z i , z i ) are annihilated by

dα̇z i = 0, dα i z
j = 0, (2.27)

and this is consistent with the algebra (2.22). In other words, the constraints

dα̇Ψ = dα i Ψ = 0 (2.28)

on a general superfield Ψ are integrable.

In what follows, we will assume that our background fields depend only on these

variables. Since the supercharges in (2.26) are independent of (z i, z i) any background

constructed with them will be invariant under this N = 1 supersymmetry. This also

means that a background preserving this amount of supersymmetry is naturally almost-

complex. Of course we still have to check that the background is on-shell. This will be

the subject of section 3 where we will generalize the realization (2.25) to a curved six-

dimensional background.

2.3 Complex and Kähler geometry using frames

The appropriate language to construct the pure spinor superstring sigma model in a general

background uses frames. Since we want to study the heterotic string in a Calabi-Yau

background, it is useful to review complex and Kähler geometry in this language. The

reader familiar with this material, or willing to accept the interpretations of the relevant

formulæ given in the subsequent sections, can skip ahead to section 3. This discussion is

based on the definitions and conventions of [16].

A tangent complex index will be denoted by i, as in the previous subsection, and a

coordinate (or “curved”) index will be denoted by i. In a complex manifold of dimension

n a hermitian metric is given in local coordinates by4

ds2 = g i jdz i ⊗ dz j . (2.29)

The Riemannian metric on this manifold is given by Re(ds2) and the imaginary part of

ds2 is given by

ω = ig i jdz i ∧ dz j, (2.30)

and is called the associated (1, 1)-form (or Kähler form). An hermitian coframe is defined

by two matrices (E i
i, E

i
j) such that

ds2 = g i jdz i ⊗ dz j = E i
i E

i
j dz i ⊗ dz j = E i ⊗ E

i
, (2.31)

where E i = E i
i dz i and E

i
= E

i
i dz i. Using the coframe, the associated (1, 1)-form is

given by

ω = iE i ∧ E
i
. (2.32)

4A bar over an antiholomorphic index will not be used unless it is necessary.
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As usual, the exterior derivative is d = ∂ +∂ = dz i∂ i +dz i∂ i. We can compute the exterior

derivative of the coframe giving

dE i = (dE i
i) ∧ dz i =

[
(∂E i

i)E
i
j − E

i
i∂E

j
i

]
∧ E j + T i, (2.33)

where T i is a (2, 0)-form defined by the equation above. Its explicit expression is

T i = (∂E i
i)E

i
j ∧ E j + (∂E

j
i)E

i
i ∧ E j (2.34)

with E i
i = (E i

i)
−1. The complex manifold is Kähler if T i = 0. Equation (2.33) can be

written in the form

dE i = Ω i
j ∧ E j + T i (2.35)

where Ω i
j = (∂E i

i)E
i
j − E

i
i∂E

j
i and satisfies Ω + Ω

†
= 0. Such a connection Ω is

compatible with both the metric and complex structure. To see this more clearly, note that

d(E i ∧ E
i
) = T i ∧ E

i
− E i ∧ T

i
. (2.36)

From this last equation we can also see the standard definition of a Kähler manifold, that

is, dω = 0 if T i = 0. The equations above allow us to define covariant exterior derivatives

∇ and ∇ given by

∇ = ∂ + (E
−1

∂E) i
j, ∇ = ∂ − (∂EE−1) i

j. (2.37)

With this definition we can say that E i is covariantly holomorphic

∇E i = 0, (2.38)

while the holomorphic covariant exterior derivative ∇ defines the torsion

∇E i = T i, (2.39)

In the case of vanishing torsion, these last two equations say

∇ iE
i
j = 0, ∇ iE

i
j = ∇ jE

i
i, (2.40)

where the second equation translates to the usual ∂ ig j k = ∂ jg i k. One should be careful to

note that the definition of covariant derivatives acts differently on the frames E i and E
i
,

i.e. (∇)† 6= ∇. This is because the connection Ω defined above is skew-hermitian:

Ω + Ω† = 0 → (d + Ω)† = d − Ω, (2.41)

so the analogous expressions for the covariant derivatives (2.37) for E
i
have opposite signs

and we have, in the case of vanishing T
i
,

∇ iE
i
j = 0, ∇ iE

i
j = ∇ jE

i
i. (2.42)
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Curvature. We can define new covariant derivatives using the inverse of the

coframe matrices.

∇ i = E i
i∇ i, ∇ i = E

i
i∇ i. (2.43)

Also, note that because of (2.40) we have

∇ iE
j
i = 0, E i

j∇ iE
k

i = E i
i∇ jE

k
i. (2.44)

Using the new covariant derivatives above we can rewrite these expressions as

∇ jE
j
i = 0, ∇ iE

k
j = ∇ jE

k
i. (2.45)

As usual, the curvature is defined from the commutators of covariant derivatives. Since

the manifold is hermitian, we have [∇ i ,∇ j ] = 0. The same will be true for ∇ i precisely

if the second equation in (2.45) holds. So, in terms of the new covariant derivatives the

Kähler condition is [∇ i ,∇ j ] = 0. We will see how this condition arises from nilpotence of

the BRST charge in section 3.

The non vanishing part of the curvature matrix can be defined as

R i j = [∇ i ,∇ j ]. (2.46)

Since the first equation of (2.45) holds we have that

R i j = E i
iE

j
jR i j = [∇ i ,∇ j ]. (2.47)

Due to all the symmetries the curvature matrix has when the manifold is Kähler, there are

three equivalent ways to write the Ricci-flatness condition. The first is the usual Ric = 0,

the second is Tr(R i j) = 0 and the last one is δ i jR i j = δ i j[∇ i ,∇ j ] = 0. Again, in section 3

we will see how this last equation appears from nilpotence of the BRST charge.

Vector bundles. Since we are studying the heterotic string, we know vector bundles

also appear in the theory and couple to the background in a non-trivial way. Consider that

our manifold comes with additional structure given by a gauge 1-form

A = A iE
i + A iE

i
= AΣ

i TΣE i + A
Σ

i TΣE
i
, (2.48)

where TΣ are the gauge algebra generators. We generalize the covariant derivatives above

to include this gauge 1-form connection

D i = ∇ i − A i, D i = ∇ i − A i. (2.49)

Computing again the conditions that give Kähler and Ricci-flatness [D i ,D j ] = 0 and

δ i j[D i ,D j ] = 0 they factorize into original Kähler and Ricci-flatness and holomorphic YM

equations, i.e. F i j = 0 and δ i jF
i j

= 0.
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3 An Ansatz for the d-operator algebra and BRST charge

The expression for the d-operators in a general curved background was derived in [13]. It

is given by

dbα = Ebα
cM

[
PcM

+
1

2
BcM bN

(∂Z
bN − ∂Zbn) − ΩcM

bβ
bγλbγωbβ

− AΣ

cM
JΣ

]
, (3.1)

where PcM
are the momenta conjugate to the worldsheet variables defined as PcM

=

δS/δ(∂0Z
cM). The nilpotence of the BRST charge is computed using Poison brackets

[PcM
, Z

bN ]rmPB = δ
bN
cM

and [λbα, ωbβ
]PB = δbα

bβ
. Note that the background field BcM bN

does not

mix with the other background fields in (3.1) when we compute the nilpotence condition.

This mixing only occurs when computing holomorphicity of the BRST current. In a flat

background the d operator reduces to dbα = Ebα
cMPcM

(ignoring the contribution from the

flat BcM bN
) and using the expression for the flat frame in the 4 + 6 notation we get pre-

cisely (2.23) after replacing the conjugate momenta by the corresponding derivatives. The

flat space BRST charge is

Q =

∮ (
λαdα + λ

α̇
dα̇ + λα idα i + λ

α̇ i
dα̇ i

)
, (3.2)

and it will square to zero if the ghosts satisfy the pure spinor constraint, reduced to

4 + 6 notation

λαλ
α̇

+ λα iλ
α̇ i

= 0, (3.3)

λαλ i
α − ǫ i j kλ

j

α̇λ
α̇ k

= 0, (3.4)

λ
α̇
λ

i

α̇ − ǫ i j kλ j
αλ

α k
= 0. (3.5)

We want to generalize this to a flat four-dimensional background plus a curved six

dimensional one. We must find the appropriate generalization of the d operators for

this case. The first thing to note is that if they are generalized to covariant derivatives

(∇α,∇α̇,∇α i,∇α̇ i) satisfying the following algebra

{∇α,∇β} = 0 {∇α,∇α̇} = −2i∇αα̇ {∇α̇,∇β̇} = 0

{∇α,∇β i} = −2iεαβ∇ i {∇α,∇α̇ i} = 0 {∇α̇,∇β̇ i
} = −2iεα̇β̇∇ i (3.6)

{∇α i,∇β j} = −4iεαβǫ i j k∇ k {∇α i,∇α̇ j} = −2iδ
i j
∇αα̇ {∇α̇ i,∇β̇ j

} = −4iε
α̇β̇

ǫ
i j k

∇ k

the BRST charge will be nilpotent. Here, the covariant derivatives (∇αα̇,∇ i ,∇ i ) are

defined by these equations. Using the variables defined in section 2.2 we can write the

spinor covariant derivatives as

∇α = ∂α + iθ
α̇
∇αα̇ + 2iθ i

α∇ i,

∇α̇ = −∂α̇ − iθα∇αα̇ − 2iθ
i

α̇∇ i,

∇α i = ∂α i + iθ
α̇
i ∇αα̇ − 2iǫ i j kθ

j
α∇ k

∇α̇ i = −∂α̇ i − iθα
i ∇αα̇ + 2iǫ i j kθ

j

α̇∇ k, (3.7)
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The higher order dependence on θs come from the derivatives (∇αα̇,∇ i ,∇ i ). Note that

the equations (3.7) can be put in the form (3.1) with the spin connection term ΩcM

bβ
bγλbγωbβ

and the gauge connection term AΣ

cM
JΣ inside the bosonic covariant derivatives. Since the

background does not break four-dimensional Lorentz symmetry, the covariant derivative

∇αα̇ is just ∂αα̇ + O(θ2) and nothing will depend on xαα̇. Moreover, since we are imposing

that the background is invariant under the N = 1 supersymmetry, the background cannot

depend on (θα, θ
α̇
). We will now derive the restrictions imposed by these conditions.

Repeated application of the Jacobi identities

(−)AC [∇A, [∇B ,∇C}} + (−)BA[∇B, [∇C ,∇A}} + (−)CB [∇C , [∇A,∇B}} = 0,

for the covariant derivatives will show that the background is on-shell. Here A, B and C

corresponds to any tangent space index. At dimension 3/2 we have

[∇α,∇
ββ̇

] = εαβW
β̇
, [∇α,∇ i ] = Fα i, [∇α̇,∇ i] = 0, (3.8)

together with their complex conjugates. Note that the first and last equations are a con-

sequence of the algebra (3.6) plus Jacobi identities, while the second is the definition of

F α i. To proceed, we have to solve order-by-order in θs using the Jacobi identities. Four-

dimensional Lorentz invariance implies that the first components of the superfields defined

above vanish and their second components should be four-dimensional scalars, as discussed

above. The field-strengths (Wα, F α i) have an expansion in powers of θs. In particular we

have the components

Wα = θαD + θ i
αh i + . . . Fα i = θαF i + θ j

αR i j + . . . (3.9)

where the ellipses denote components that do not concern us at the moment. The back-

ground defined by (3.6) will be N = 1 supersymmetric if and only if these components

vanish since all field-strengths should be invariant under shifts of (θα, θ
α̇
). This is related

to the usual N = 1 field theory requirement that in order to have a supersymmetric vac-

uum, D and F terms should vanish. The h i and R i j components are, at this stage, not

required to vanish and are related to the geometry of the compactified space. We will now

calculate the values of these components in terms of higher-dimension field-strengths.

Using the Jacobi identities again we can alternative forms of the field-strengths:

[∇α i,∇ββ̇
] = εαβF

β̇ i
, [∇α i,∇ j] = −2ǫ i j kFα k , [∇α i,∇ j] = −δ i jWα. (3.10)

At lowest order in θ the F i component inside Fα i is given by {∇α, F β i} = εαβF i. However,

using (3.10) we can write Fα i as

Fα i =
1

2
ǫ i j k[∇α j,∇ k]. (3.11)

Now, the {∇α, [∇β j,∇ k]} Jacobi identity implies that

F i =
i

2
ǫ i j k[∇ j ,∇ k ] (3.12)
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and since [∇ j ,∇ k ] is anti-symmetric, it follows that the vanishing of the component F i

implies that [∇ j ,∇ k ] = 0. As we saw in section 2, these two conditions imply that the

compactification manifold is Kähler and that the vector bundle over it is holomorphic.

In a similar way, the component D of Wα is the lowest component of {∇α,Wβ} = εαβD.

The computation of its value in terms of higher dimension field-strengths has one additional

step. First we have to use the Jacobi identity with {∇α, [∇β i,∇ j ]} to find

δ i j{∇α,W α} = {∇α i, F
α
j } + 4i[∇ i ,∇ j] (3.13)

Next, we use the Jacobi identity with {∇α i, [∇β j
,∇ k ]} to find

{∇α i , F
α
j } = −4i[∇ i ,∇ j ] + 2iδ i jδ

k l[∇ k ,∇ l ]. (3.14)

Plugging this result back into (3.13) we find

{∇α,W α} = 2iδ k l[∇ k ,∇ l]. (3.15)

This means that the D component of Wα vanishes when δ k l[∇ k ,∇ l] = 0. This equation

is the second condition imposed by four-dimensional supersymmetry.

In summary, we have found that the vanishing of F -terms in the superfield Fα i implies

the Kähler condition on the compactified manifold and part of holomorphic YM equations

for the gauge background. The vanishing of the D-term in the Wα field-strength implies

Ricci-flatness and the remaining equation for the set of holomorphic YM equations. One

can proceed to find the values of the other components of the field-strengths and compute

the expression for the curved d-operators in (3.6) explicitly. For example, one can use the

Jacobi identity with {∇α i , [∇β j ,∇ k ]} to find that R i j = −2i[∇ j ,∇ i ]. The component h i

of Wα vanishes due to the Kähler condition and the Jacobi identity with {∇α i , [∇β j ,∇ k ]}.

4 Physical state conditions and spectrum

Now that we have a BRST operator for the compactified background we want to check

that Q(V ) = 0 on a ghost number one vertex operator V gives the correct spectrum for the

compactification. In order to do this we will first show that we get the correct equations of

motion for a super-Maxwell multiplet plus three chiral fields with N = 1 supersymmetry

in four dimensions and then generalize to the full string.

4.1 Ten dimensional super-YM in 1 + 3 notation

The propose of this section is to see how standard N = 1 superfield equations of motion

appear when we perform a toroidal reduction of the ten dimensional ghost number one

vertex operator and BRST charge. The vertex operator takes the form

V = λαAα + λ
α̇
Aα̇ + λα iAα i + λ

α̇ i
Aα̇ i (4.1)
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where (Aα, Aα̇, Aα i , Aα̇ i ) are superfields of the full superspace. The solution of QV = 0

where Q is given by equation (3.2) is

dαAβ + dβAα = 0

dαAβ i + dβ iAα = εαβΦ i

dα iAβ j + dβ jAα i = 2εαβǫ i j k Φ k

dαAα̇ + dα̇Aα = Aαα̇

dα iAα̇ j + dα̇ jAα i = δ i j Aαα̇ (4.2)

dα̇A
β̇

+ d
β̇
Aα̇ = 0

dα̇Aβ̇ i
+ dβ̇ i

Aα̇ = εα̇β̇Φ i

dα̇ iAβ̇ j
+ d

β̇ j
Aα̇ i = 2ε

α̇β̇
ǫ i j k Φ k

dαA
β̇ i

+ d
β̇ i

Aα = 0

dα̇Aβ i + dβ iAα̇ = 0,

where the ds are defined in (2.25) and (Aαα̇,Φ i ,Φ i ) are defined by these equations. The

vertex operator V also has the gauge invariance δV = QΛ with a real superfield Λ. In

terms of its components, this translates to

δAα = dαΛ, δAα i = dα iΛ (4.3)

together with their complex conjugates. The first equation in (4.2) implies that Aα =

dαV for some complex superfield V . The equations of motion imply the following

gauge invariance

δAαα̇ = ∂αα̇Λ, δΦ i = ∂ iΛ, δΦ i = ∂ iΛ (4.4)

We can use the algebra of the supersymmetric derivatives to derive various relations on

the fields defined by (4.2). It is possible to solve all the Bianchi identities for a general set of

(Aαα̇,Φ i ,Φ i ) but since our goal is to generalize this to the case of a CY compactification,

we will take another route. First, note that it is possible to fix (Aα, Aα̇) to vanish without

trivializing the system of equations. The gauge transformation that preserves this choice

has to satisfy

dαΛ = dα̇Λ = 0, (4.5)

which, by use of the d-operator algebra, means Λ is just a constant in four dimensions.

This implies that the degrees of freedom described by (0, 0, Aα i , Aα̇ j ) do not have gauge

invariance from the four-dimensional point of view.

When Aα = Aα̇ = 0 the equations (4.2) simplify to

dαAβ i = εαβΦ i, dα̇Aβ i = 0

dα iAβ j + dβ jAα i = 2εαβǫ i j kΦ k, dα iAα̇ j + dα̇ jAα i = 0 (4.6)

dα̇ iAβ̇ j
+ dβ̇ j

Aα̇ i = 2εα̇β̇ǫ i j kΦ k dα̇Aβ̇ i
= εα̇β̇Φ i

The first equation can be used to show that dαΦ i = 0, so it describes an anti-chiral

field. The second equation together with the first shows that d
2
Φ i = 0, which is the
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massless equation for a chiral field. Then, using the commutator [d
2
, dα̇ i] = −4idα̇∂ i and

a combination of the equations above, we find that

d
2
Φ kǫ k i j = −2i(∂ iΦ j − ∂ jΦ i) = 0, (4.7)

which indicates that the massless field equation of the chiral superfield is related to the

cohomology of 1-forms. If we set the higher (θ i
α, θ

i

α̇) components to zero, we have precisely

a triplet of chiral and anti-chiral fields. We also need to determine the higher (θ i
α, θ

i

α̇)

components. This is accomplished by computing dα iΦ j and dα̇ iΦ j. Using the equations

above and the d algebra, we find that

dα iΦ j = −2i∂ jAα i, dα̇ iΦ j = −2i∂ jAα̇ i, (4.8)

so the higher (θ i
α, θ

i

α̇) components do not describe new degrees of freedom. If the fields do

not depend on (z i , z i ) we have a triplet of four-dimensional chiral fields, as desired.

It is easy to check that if we try to impose Aα i = Aα̇ i = 0, we get a trivial sys-

tem. Similarly, a solution where Φ i = 0 and Φ i = 0 is trivial because the vector field

strength Wα is a higher component in Φ. There is no covariant way to solve the con-

straints containing only the gauge part. However, if the fields do not depend on the

internal coordinates, it is possible to isolate the four-dimensional gauge part. Instead of

following this path, it is worthwhile to derive the equations of motion from (4.2) for a

general (Aαα̇ = i[dα, dα̇]V,Φ i ,Φ i ). Repeated application of the d-algebra gives

dα̇(Φ i + 2∂ iV ) = 0, dα(Φ i − 2∂ iV ) = 0, (4.9)

d2Φ i + 2iǫ i j k∂ jΦ k = 2∂ id
αAα, d

2
Φ i + 2iǫ i j k∂ jΦ k = 2∂ id

α̇
Aα̇, (4.10)

dαd
2
dαV − 2δ i j(∂ iΦ j − ∂ jΦ i) = 0, (4.11)

where higher components of (θ i, θ
j
) (which are consequences of the equations above) are

set to zero. These are the linearized equations of motion for ten dimensional superYM in

1+3 notation obtained long ago in reference [17]. If the fields do not depend on the internal

coordinates, we get three chiral fields and a vector multiplet. The higher components are

again determined by equation (4.2).

4.2 Heterotic string spectrum

The spectrum of the heterotic string is calculated in a similar way by repeated application

of the curved space derivative algebra and the equations of motions coming from QA = 0.

Additionally, we now have to remember that the covariant derivatives act appropriately on

each section of the various vector bundles over the CY. We will see that when the section

of vertex operator is not in the cohomology of ∇ i, the state corresponds to a Kaluza-Klein

mode obeying a massive superspace equation of motion.

We begin with the compactification dependent sector. The complete heterotic string

vertex operator must be tensored with the right-moving dimension 1 currents5 given by

5In order to get a dimension (0, 0) vertex operator we should also multiply by the right-moving ghost c.
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(∂xa, ∂y i, ∂y i,JΣ), where Σ is a general index for the two E8 algebras. Although not

discussed in the present paper,6 the anomaly cancelation condition of the B-field should

be taken into account. The simplest way to solve it is by the standard embedding. This

embedding breaks one of the E8 factors into E8 → E6 × SU(3). The Kac-Moody currents

are decomposed into

JΣ → (Jσ ,Jρ ,J
i

A ,J
j

A
,J

i j
) (4.12)

where σ is the index of the adjoint representation of E8, ρ is an index for the adjoint

representation of E6, A is the index for the fundamental representation of E6, and ( i j) are

indices for endomorphisms of the holomorphic tangent bundle.

The BRST charge is now

Q =

∮
(λα∇α + λ

α̇
∇α̇ + λα i ∇α i + λ

α̇ i
∇α i ). (4.13)

We proceed exactly as in the previous section. The equations from the BRST physical state

condition are of the form (4.2) with the operators d replaced by the operators ∇ of (4.13).

As in the previous section, we will set AΓ
α = A

Γ

α̇ = 0 where Γ denotes any right-moving

index. After doing this, we obtain the equations

∇αAΓ
β i = εαβΦ

Γ

i , ∇α̇AΓ
β i = 0

∇α iA
Γ
β j + ∇β jA

Γ
α i = 2εαβǫ i j kΦ

Γ
k, ∇α iA

Γ

α̇ j + ∇α̇ jA
Γ
α i = 0 (4.14)

∇α̇ iA
Γ

β̇ j + ∇
β̇ j

A
Γ

α̇ i = 2ε
α̇β̇

ǫ i j kΦ
Γ

k ∇α̇A
Γ

β̇ i = ε
α̇β̇

ΦΓ
i

Using these equations and the algebra (3.6) we obtain ∇αΦ
Γ

i = 0 and ∇
2
Φ

Γ

i = 0.7 Note

that the commutator [∇
2
,∇α̇ i] = −4i∇α̇∇ i still holds for the covariant derivatives. This

implies that the chiral fields ΦΓ
i satisfy

∇ iΦ
Γ
j −∇ jΦ

Γ
i = 0. (4.15)

Thus, for each type of index Γ, the corresponding chiral field is in the cohomology ring

H0,1(T), where T is the vector space corresponding to the index Γ. This is the expected re-

sult for the matter part of a CY compactification. The analysis of the higher θ-components

proceeds as in the previous section. In particular, the ΦΓ do not describe additional degrees

of freedom at the massless level.

To derive the equations of motion for the compactification-independent part, we have

to solve the generalization of equations (4.2) with covariant derivatives without setting the

superfields AΓ
α and A

Γ

α̇ to zero. Again, we obtain the generalization of (4.9):

∇α̇(ΦΓ
i + 2∇ iV

Γ) = 0, ∇α(Φ
Γ

i − 2∇ iV
Γ) = 0, (4.16)

∇2ΦΓ
i + 2iǫ i j k∇ jΦ

Γ

k = 2∇ i∇
αAΓ

α, ∇
2
Φ

Γ

i + 2iǫ i j k∇ jΦ
Γ
k = 2∇ i∇

α̇AΓ
α̇, (4.17)

∇α∇
2
∇αV Γ − 2δ i j(∇ iΦ

Γ
j −∇ jΦ

Γ

i ) = 0. (4.18)

6In the pure spinor formalism this comes from conservation of the BRST current and the anomaly in

the conservation of ghost and gauge currents.
7We define ∇

2 = ∇
α

∇α and ∇
2

= ∇α̇∇
α̇

.
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If the fields do not depend on the compactification, the three possible right moving

indices are the four-dimensional vector index, the adjoint E8 index, and the adjoint E6

index. This completes the massless spectrum of the heterotic string in the CY background.

As a final remark, since the equations above do not impose that the fields are harmonic

forms on the CY (see equation 4.17), they also describe in superspace the KK spectrum of

the compactification.

5 Discussion

In this paper, we began the study of superstring compactifications using the pure spinor

formalism. Although only N = 1 supersymmetry in four dimensions is preserved, the de-

scription of the BRST operator and spectrum given here uses the full superspace inherited

from ten dimensions. We first considered some algebraic aspects of the compactification,

mainly the BRST operator and the spectrum. In a second paper we will discuss further

aspects, such as the construction of the sigma model describing the dynamics of the com-

pactification and the anomaly cancelation condition, which comes from the conservation

of the BRST current. In this discussion the B-field, which played no role in the present

work, will be included.

One interesting direction for future work could be to see how the well known non-

renormalization theorems of Calabi-Yau compactifications arise in the supersymmetric de-

scription given here. This will require knowledge of the zero-mode measure for scattering

amplitudes (which will be presented elsewhere). It is possible that the non-renormalization

is just a consequence of the superspace integration arising from this measure.

A more important line of research is to generalize these results to Type II strings,

especially in the case of flux compactifications (for a review see e.g. [18]). Most of the results

in the literature use only supergravity methods and little is known about α′ corrections and

the spectrum. Even though it is unlikely that a sigma model including all powers of θ can be

written explicitly, partial knowledge will already be enough to address important questions

pertaining to the form of the effective action of the light modes in a flux compactification.

We plan to address flux compactifications of the pure spinor formalism in the future.
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